Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity.

نویسندگان

  • Yong Li
  • Ken Inoki
  • Kun-Liang Guan
چکیده

Tuberous sclerosis complex (TSC) is a genetic disease caused by a mutation in either the tsc1 or tsc2 tumor suppressor gene. Recent studies have demonstrated that TSC2 displays GAP (GTPase-activating protein) activity specifically towards the small G protein Rheb and inhibits its ability to stimulate the mTOR signaling pathway. Rheb and TSC2 comprise a unique pair of GTPase and GAP, because Rheb has high basal GTP levels and TSC2 does not have the catalytic arginine finger found in Ras-GAP. To investigate the function of TSC2 and Rheb in mTOR signaling, we analyzed the TSC2-stimulated Rheb GTPase activity. We found that Arg15, a residue equivalent to Gly12 in Ras, is important for Rheb to function as a substrate for TSC2 GAP. In addition, we identified asparagine residues essential for TSC2 GAP activity. We demonstrated a novel catalytic mechanism of the TSC2 GAP and Rheb that TSC2 uses a catalytic "asparagine thumb" instead of the arginine finger found in Ras-GAP. Furthermore, we discovered that farnesylation and membrane localization of Rheb is not essential for Rheb to stimulate S6 kinase (S6K) phosphorylation. Analysis of TSC1 binding defective mutants of TSC2 shows that TSC1 is not required for the TSC2 GAP activity but may function as a regulatory component in the TSC1/TSC2 complex. Our data further demonstrate that GAP activity is essential for the cellular function of TSC2 to inhibit S6K phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The TSC1-TSC2 complex: a molecular switchboard controlling cell growth.

TSC1 and TSC2 are the tumour-suppressor genes mutated in the tumour syndrome TSC (tuberous sclerosis complex). Their gene products form a complex that has become the focus of many signal transduction researchers. The TSC1-TSC2 (hamartin-tuberin) complex, through its GAP (GTPase-activating protein) activity towards the small G-protein Rheb (Ras homologue enriched in brain), is a critical negativ...

متن کامل

The Rheb family of GTP-binding proteins.

Rheb proteins represent a novel and unique family of the Ras superfamily GTP-binding proteins that is conserved from yeast to human. Biochemical studies establish that they bind and hydrolyze GTP. Molecular modeling studies reveal a few structural differences between Rheb and Ras, which may suggest that residues involved in biochemical activities differ between the two G-proteins. The function ...

متن کامل

Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb

BACKGROUND Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS We show that the small G protein...

متن کامل

Insulin activation of Rheb , a mediator of mTOR / S 6 K / 4 E - BP signaling

Tumor suppressor genes evolved as negative effectors of mitogen and nutrient signaling pathways, such that mutations in these genes can lead to pathological states of growth. Tuberous sclerosis (TSC) is a potentially devastating disease associated with mutations in two tumor suppressor genes, TSC1 and 2, that function as a complex to suppress signaling in the mTOR/S6K/4E-BP pathway. However, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 24 18  شماره 

صفحات  -

تاریخ انتشار 2004